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Abstract
Recent experiments revealed that the dielectric dispersion spectrum of fission
yeast cells in a suspension was mainly composed of two sub-dispersions. The
low-frequency sub-dispersion depended on the cell length, whereas the high-
frequency one was independent of it. The cell shape effect was qualitatively
simulated by an ellipsoidal-cell model. However, the comparison between
theory and experiment was far from being satisfactory. In an attempt to close
up the gap between theory and experiment, we considered the more realistic
cells of spherocylinders, i.e. circular cylinders with two hemispherical caps at
both ends. We have formulated a Green function formalism for calculating
the spectral representation of cells of finite length. The Green function can
be reduced because of the azimuthal symmetry of the cell. This simplification
enables us to calculate the dispersion spectrum and hence assess the effect of
cell structure on the dielectric behaviour of cell suspensions.

1. Introduction

Dielectric spectroscopy has become a quantitative method of real-time monitoring of cell
growth in suspensions [1–3]. The real-time monitoring has advantages over conventional
techniques and would be important to investigate the dynamic behaviour of cell growth.
There are many factors that may influence the dielectric behaviour of biological materials:
structure, orientation of dipoles, surface conductances, membrane transport processes, etc.
All these factors influence one another and it is difficult to separate out the effect of a single
one. However, some effects can be dominant at certain ranges of frequencies. For instance,
the dielectric dispersion spectrum of living cell suspensions in radiofrequencies is mainly
determined by the cell shape. The objective of this work is to develop a theory for such
correlation, on which new applications in biotechnology rely.

More recently, Asami [4] reported that the dielectric dispersion spectrum of fission yeast
cells in a suspension was mainly composed of two sub-dispersions. The experimental data
revealed that the low-frequency sub-dispersion depended on the cell length, while the high-
frequency one was independent of it. Asami adopted a shell-ellipsoid model [3], in which an
ellipsoid is covered with an insulating shell as the electrical model of non-spherical biological
cells. The comparison between model calculation [3] and experimental data [4] was far from
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being satisfactory. Asami suggested that the discrepancy is attributed to the rod-like cell
shape. However, the depolarization factor needed in his theory is difficult to calculate for cells
of rod-like shape because of a lack of available theories.

In this work, we propose the use of the spectral representation [5] for analysing the cell
models. The spectral representation is a rigorous mathematical formalism of the effective
dielectric constant of a two-phase composite material [5]. It offers the advantage of the
separation of material parameters (namely the dielectric constant and conductivity) from the
cell structure information, thus simplifying the study. From the spectral representation, one
can readily derive the dielectric dispersion spectrum, with the dispersion strength as well as
the characteristic frequency being explicitly expressed in terms of the structure parameters
and the materials parameters of the cell suspension (see section 3 below). The actual shape
of the real and imaginary parts of the permittivity over the relaxation region can be uniquely
determined by the Debye relaxation spectrum, parametrized by the characteristic frequencies
and the dispersion strengths. So, we can study the impact of these parameters on the dispersion
spectrum directly.

2. Formalism

2.1. Spectral representation theory

We consider a two-component composite dielectric with complex dielectric constant ε(r)
equal to ε2 = ε2 + σ2/j2πf in the host medium and ε1 = ε1 + σ1/j2πf in the embedding
medium. An interface � separates the two media. In a uniform applied electric field E0ẑ (for
convenience, let E0 = −1), the electrostatic potential satisfies the Laplace’s equation:

∇ ·
[(

1 − 1

s
η(r)

)
∇�(r)

]
= 0 (1)

where s = ε2/(ε2 − ε1) denotes the relevant material parameter and η(r) is the characteristic
function of the composite, having value 1 for r in the embedding medium and 0 otherwise.
The electric potential �(r) can be solved formally as:

�(r) = �0(r) +
1

s

∫
dr′η(r′)∇′G0(r − r′) · ∇′�(r′) (2)

where G0(r − r′) = 1/4π |r − r′| is the free-space Green function, and �0(r) = r · ẑ is the
potential of the unperturbed uniform fieldE0. It is instructive to convert the volume integration
into the surface integration via the Green second identity and only deal with the potential on
the interface � [6]. We denote an integral-differential operator �:

��(r) =
∮ ′

�

ds′ · ∇′G0(r − r′)�(r′) + 1
2�(r) r ∈ � (3)

to avoid the singularity ofG0(r − r′) when the integration variable r′ approaches the point of
r [6]. The integration with a ‘prime’ denotes the restricted integration which excludes r′ = r.
Let �n(r) and sn be the nth eigenfunction and eigenvalue of the � operator respectively. We
can expand �0(r) and �(r) on the interface � in a series expansion of eigenfunction �n(r):

�0(r) =
∑
n

zn�n(r) (4)

�(r) =
∑
n

szn

s − sn�n(r) (5)
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where zn are the expansion coefficients. Then we can write the effective dielectric constant ε̄
in the Bergman–Milton representation [5]:

ε̄ = − 1

V

∫
dV ε(r)Ez (6)

= 1

V

∫
dV ε0

[
1 − 1

s
η(r)

]
∂�

∂z
(7)

= ε0

[
1 − 1

V

∑
n

zn

s − sn

∮
�

ds · ẑ�n(r)
]

(8)

= ε0

[
1 − p

∑
n

fn

s − sn

]
(9)

where p is the volume fraction of the suspending cells. Note thatEz is a dimensionless electric
field because E0 = −1. The eigenvalue sn and the spectral function fn can be proved to be
real and satisfy simple properties that 0 < sn < 1, fn > 0 and

∑
fn = 1. We shall show that

both the spectral function fn and the eigenvalue sn determine the dielectric behaviour of cell
suspensions.

2.2. Cells with an axis of revolution

Now the principal problem is to calculate the eigenvalue sn and the spectral function fn. For
many cells interacting with one another, it is a formidable task. However, in the limit of a dilute
cell suspension and weak applied field, one can regard the cells in suspension as being non-
interacting and randomly oriented and the problem is reduced to that of a single cell. We will
consider cells with an axis of revolution, namely, the spheroidal and the spherocylinder cells [7]
to mimic cells of rod-like shape. The prolate spheroid is generated by rotating an ellipse around
its major axis, while the spherocylinder is obtained by fitting two hemispherical caps at both
ends of a circular cylinder. For a prolate spheroid, the eigenvalues and eigenfunctions can be
calculated exactly. The only non-zero fn equals unity for E0 being along the major or minor
axis of the prolate spheroid, and the corresponding eigenvalues are given by:

sz = − 1

q2 − 1
+
q ln

[
q + (q2 − 1)1/2

]
(
q2 − 1

)3/2 (10)

sx = (1 − sz) /2 (11)

where z and x refer to the direction along the major and minor axis respectively. For a
spherocylinder, the consideration of the symmetry properties of the cell will help us choose the
appropriate orthogonal basis for calculating the matrix elements of the � operator. Because
of the rotation symmetry about the major axis of the spherocylinder, the eigenfunction is
necessarily of the form (an cos nθ+bn sin nθ)f (x)with n being an integer. Due to the inversion
symmetry of the cell, f (x) must be either odd or even functions. It is convenient to expand
f (x) in a series of Legendre polynomials Pm(x/l), where 2l is the length of the cell. The
applied uniform field E0 can always be resolved into two components along the major and
minor axes of the spherocylinder, so we can calculate the sn and fn for E0 along the major
and minor axes separately. By symmetry, in order to obtain a non-zero fn, the eigenfunction
should be the form of

∑
AmP2m+1(x/ l) for E0 being along the major axis, while it reads

cos θ
∑
BmP2m(x/l) for E0 being along the minor axis, with m = 0, 1, 2, . . .. Using this

orthogonal basis, we can calculate a truncated matrix according to the precision needed. We
should remark that the matrix is generally non-symmetric.
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3. Dielectric dispersion spectrum

We show here that from the spectral representation, one can readily derive the dielectric
dispersion spectrum. Substituting ε1 = ε1 + σ1/j2πf and ε2 = ε2 + σ2/j2πf (ε and σ being
the real and imaginary parts of the complex dielectric constant) into equation (9), defining a
new parameter t = σ2/(σ2 − σ1) and re-defining s = ε2/(ε2 − ε1), we rewrite the effective
dielectric constant ε after simple manipulations:

ε = εH +
∑
n

'εn

1 + jf/f cn
+
σL

j2πf
(12)

where εH and σL are the high-frequency dielectric constant and the low-frequency conductivity
respectively, while'εn are the dispersion magnitudes, f cn are the characteristic frequencies of
the nth sub-dispersion.

We have already shown that there are only two poles in the spectral representation of
the prolate spheroids. In the following, we will show that there are two dominant poles in
the spectral representation of the spherocylinder and hence there are two sub-dispersions in
the dielectric dispersion spectrum. The dispersion magnitudes and dispersion frequencies are
given by:

'ε1 = 1

3
pε2

s1(s − t)2
s(s − s1)(t − s1)2 (13)

'ε2 = 2

3
pε2

s2(t − s)2
s(s − s2)(t − s2)2 (14)

f c1 = σ2s(t − s1)
2πε2t (s − s1) (15)

f c2 = σ2s(t − s2)
2πε2t (s − s2) . (16)

Thus, we are able to obtain the dispersion strengths as well as the characteristic frequencies
explicitly in terms of the structure parameters and the materials parameters of the cell
suspension.

The dielectric dispersion spectrum of a dilute suspension of prolate spheroids is mainly
composed of two sub-dispersions, namely, sz is responsible for the lower frequency one and
sx for the higher one. For a spherocylinder, we obtain a non-vanishing series of fn and
sn. Along the major axis, f1 is dominant for all q and we can omit the smaller ones. This
dominant f1 is plotted in figure 1 against q, and the corresponding sz are plotted in figure 2,
together with the exact result of a prolate spheroid. As is evident in figure 2, we can see that
the difference between the two models is indeed small. Along the minor axis, the solution
becomes more complicated. The dominant f2 near q = 1 decreases quickly as q increases;
another f3 increases and takes over at large q. These two fn are also plotted in figure 1 and their
corresponding eigenvalues are plotted in figure 3. As shown in figure 3, the two eigenvalues
tend to that of a prolate spheroid in the limit of both small and large q.

Near q = 2, the two fn have comparable values, resulting in two sub-dispersions at higher
frequency. These sub-dispersions can interfere with each other, rendering it difficult to find
the characteristic frequencies of the different sub-dispersions. Physically, the local field is the
most non-uniform in this case. Nevertheless, we will consider cells of large length and omit
this complication.

With equations (13)–(16), it is easy to calculate the effect of the rod-like cell structure
on the dispersion spectrum and to compare with experiment data. We will show that
the spherocylinder model does give some improvement towards the experimental result.
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Figure 1. The three dominant fn plotted against the axial ratio q: f1 along the major axis (solid
line), f1 along the minor axis (long dashed line) and f2 along the minor axis (short dashed line).
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Figure 2. The eigenvalue sn associated with fn along the major axis plotted against the axial ratio
q: the spherocylinder cell (solid line with filled circles), and the exact result of the prolate spheroid
(solid line).

However, the improvement is too small to close up the gap as Asami expected. In fact,
we shall see that Asami omitted the material parameters which will play an important role in
the experimental condition. By introducing the conductivity contrast t = σ2/(σ2 − σ1), we
found that a small negative t , i.e. σ1 	 σ2, should be used to close up the discrepancy.

We estimate t and s by fitting equations (13)–(16) to the experimental ratio of 'ε1/'ε2

and f c2 /f
c
1 , and we get t = −0.0014 and s = 5.0. It means that σ1 ≈ 700σ2 and ε1 ≈ 0.80ε2.

The enhanced conductivity of cell cytoplasm is attributed to the membrane potential. The
result is in contrast to the previous (unjustified) claim that σ1 ≈ σ2.

Table 1 lists the 'ε1/'ε2 ratio and f c2 /f
c
1 ratio for both experimental and theoretical

results. Using the fitting material parameters, the improvement is obvious for both the
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Figure 3. The eigenvalue sn associated with fn along the minor axis plotted against the axial ratio
q: s1 of the spherocylinder cell (solid line with filled squares), s2 of the spherocylinder cell (solid
line with filled circles), and the exact result of the prolate spheroid (solid line).

Table 1. The ratios of the characteristic frequencies 'ε1/'ε2 and the ratios of the dispersion
strengths f c2 /f

c
1 listed as a function of the length to diameter ratio q of the cells. The experimental

results were extracted from [4] together with the theoretical predictions. Both the prolate-spheroid
model and the spherocylinder model adopt the same fitting material parameters determined from
the experimental data.

Prolate-spheroid Spherocylinder
Experimental result Asami theory model model

q 'ε1/'ε2 f c2 /f
c
1 'ε1/'ε2 f c2 /f

c
1 'ε1/'ε2 f c2 /f

c
1 'ε1/'ε2 f c2 /f

c
1

3.46 2.22 8.95 0.900 3.00 2.26 5.34 2.77 5.89
7.17 8.65 27.4 2.07 7.73 6.10 15.3 6.67 16.4

10.2 16.4 52.6 3.39 13.0 9.94 25.9 10.5 27.2

prolate-spheroid model and the spherocylinder model, while the difference between the two
models is quite small.

Discussion and conclusion

In this work, we have applied the spectral representation to the dielectric dispersion of
suspensions of fission yeast cells. As mentioned by Asami [4], the discrepancies between
theory and experiment may be attributed to the rod-like cell shape. For cells of non-
conventional shape, however, there exists no available cell model in the literature and we
must develop the spectral representation from first principles.

More precisely, we have developed a Green function formalism [6,8] for calculating
the spectral representation of rods of finite length. We modelled the rod-like cells as the
spherocylinders, i.e. circular cylinders with two hemispherical caps at both ends. We solved
the spectral representation of the effective dielectric constant from first principles. Similar
formalism was adopted for cell suspensions near their sub-division point [9–11].

Generally speaking, when the axial ratio q is larger than 4, the prolate-spheroid model can
be employed as a good approximation for rod-like cell structures. For q < 4, the dielectric
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behaviour will become more sensitive to the cell structure of the suspending particles, and
there are more sub-dispersions than that of the prolate spheroid suspensions.

Our model does not include the rotational or vibrational effects, and our results are expected
to be valid only for weak electric fields. Our model also ignores the multi-shell nature of the
cells. Usually the multi-shell model is used to explain the high-frequency steps of spherical
cell suspensions. Similar conclusions were found in one of our previous paper on multi-shell
dielectric spheres in electrorheological (ER) fluids [12] to account for the effects of water
coating on the ER effects. In [12], we also showed that the spectral representation can still be
used for multi-shell model, albeit with a slight modification.

In Asami’s experiment, there exist three sub-dispersions, the highest frequency step (above
10 MHz) is due to the vacuole and cell wall as mentioned by Asami, while the two lower
frequency steps are evidently dependent on the cell shape. And the disperson magnitude of
the highest frequency step is much smaller than that of the two lower frequency ones. So one
expects that the multi-shell model has only a small effect on the lower frequency steps. In fact
the multi-shell model was used in Asami’s theory, but the discrepancy, as we mentioned in the
text, is still large.

The large cytoplasmic conductivity is a key result of our investigation. We believe that the
large cytoplasmic conductivity is reasonable because the cells have to maintain a higher ion
concentration in their cytoplasm to avoid the shrinkage of cells due to a loss of water across the
cell membrane. However, to our knowledge, there exists no direct experimental measurement
on the cytoplasmic conductivity. In our work, we propose a convenient and practical means of
determining the cytoplasmic conductivity from the dielectric spectroscopy data. This analysis
could be important for biotechnology.
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